COURSE OF
ALGORITHMS AND DATA
STRUCTURE

CHAPTER Tand 2

L1 Mathematics

eeeeeeeee
Prepared by ; Dr MAHMA OUAFA

CHAPTER 1-2

1. Brief history of computer science

2. Infroduction to algorithms
3. Simple sequential algorithm

History of computer science

®» Computer science is the science that deals with the
automatic processing of information using machines,
specifically computers.

®» Science: refers to the sum of theories and techniques.

®» Automatic processing. is done by using precise and
repeatable methods.

» [nformation: is the basic element of knowledge, which
can be stored, processed and fransformed.

®» The computer basically consists of two parts: the
hardware part and the software part

History of computer science

®» The discipline of computer science includes the study of
algorithms and data structures, computer and network
design, modeling data and information processes, and
artificial intelligence.

» Computer science draws some of its foundations from
mathematics and engineering and therefore incorporates
techniques from areas such as probability and statistics,
and electronic circuit design.

®» Computer science also makes heavy use of hypothesis
testing and experimentation during the conceptualization,
design, measurement, and refinement of new algorithmes,
InNformation structures, and computer architectures.

History of computer science

» The history of computers goes back over 200 years.

» At first theorized by mathematicians and entrepreneurs,
during the 19th century mechanical calculating
machines were designed and built fo solve the
Increasingly complex number-crunching challenges.

®» The advancement of technology enabled ever more-
complex computers by the early 20th century, and
computers became larger and more powertful.

®» fhe history of the computer science is related to the
history of the computer basically.

Intfroduction to algorithms

Question

Let's assume that a student asked you, -

How to calculate the area of a rectangle?

» How would you explain to him what must be done to calculate this

areqa?

Infroduction to algorithms

the width
Answer:

v

A

Thie following steps must be followed :

Knowing the length of the rectangle

Knowing the width of the rectangle

Calculating the area by multiplying the length by the width
Announcing and displaying the result (area of the rectangle)

e BY e ==

These steps are called Algorithm.

the length

Infroduction to algorithms

Question

Let's assume that we wrote an algorithm to solve a problem, can the

computer understand the steps of the algorithm and implement ite

Infroduction to algorithms

Answer

Before we answer this question, let's assume that we have two people,

the first iIs an Arab who only speaks Arabic and the second is an

Englishman who only speaks English.

The Arab person wrote a text in Arabic and sent it to the English

person. It is clear that the English person will not be able to understand

the text written in Arabic.

Infroduction to algorithms

Answer :

Likewise, the computer cannot understand the steps of the algorithm
because they are written in a language it does not understand.

In order for the computer to be able to understand these steps and
Implement them, the algorithm must first be franslated into one of the

programming languages Python, C++ , C JAVA, Pascal....

After that, the computer itself tfranslates the program into the language it
directly understands (machine language)

CHAPTER 2

Algorithms ‘sequential algorithm’

All program is a result of translating the algorithm into instructions directed to
be executed using the computer.

Algorithm program
Step 1 . Instruction 1
Step 2 Programming Instruction 2
Step 3 language Instruction 3

Algorithms ‘sequential algorithm’

Algorithm properties : The algorithm has the following characteristics

1.

Generality : we note that the previous steps are suitable for calculating the area
of any rectangle .

Inputs: The number and nature of inputs vary from one algorithm to another. The
inputs in the previous example are length and width.

Outputs: The results of executing the algorithm. The outputs in the previous example
are areaq.

Clarity (the opposite of vague): Each step of the algorithm must be clear and
unambiguous, meaning that each step must be clear in a way that allows it to be
executed correctly.

Solvability: It is possible for a certain step in the algorithm to be clear
(unambiguous) but not solvable. For example, we cannot find \ —4.

Time limitation: |t is possible for a certain step in the algorithm to be clear
(unambiguous) and solvable but not solvable in a specific time frame. For
example, calculating the final value of the number 1.

Algorithms ‘sequential algorithm’

= Machine language (binary): This is what is stored on your disks (the
.exe for example), and brought info memory 1o be executed, is a
sequence of 1 and 0 (eg: T01000100).

®» For a human being, writing sequences of 0s and 1s is not very fun,
not very readable, and causes many errors.

» So they invented programming languages,

Algorithms ‘sequential algorithm’

How does the machine "understand” a programming language®¢

You need a program that translates the text of your program into binary code,

we are dealing with a compiler,

A computer program is a list of commands that tell a computer what to do. It is

presented in the form of one or more sequences of instructions

Algorithms ‘sequential algorithm’

So,

» An algorithm is a method for solving a particular problem.

®» A programming language that describes an algorithm

» Program is Séquence of instructions which specifies step by step the

operations to be carried out to obtain a result.

Algorithms ‘sequential algorithm’

» Algorithm Structure (General form)

Algorithm
Variables
Begin
Instruction 1

Instruction 2
Instruction 3

Algorithms ‘sequential algorithm’

After taking a general overview of what an algorithm, a program, and

programming languages , we return below to detail the basic elements that

make up an algorithm.

Algorithms ‘sequential algorithm’

» Basic instructions in the algorithm

1. Assignment process . Give a value to a variable A« 5
It means giving the variable A a numerical value 5.

2. Reading process: A process in which the user assigns a value to a variable
via the keyboard. We express it with the keyword “ READ”

read (A)

It means read the value that the user will enter and put it in the variable A .

Algorithms ‘sequential algorithm’

3. Writing process:
It is the process that shows the value of a variable by printing it on the screen.

It also prints text sentfences on the screen and expresses it using the keyword
(write) , exemples :

A—5

Write(A)

It means showing the value of the variable A on the screen
Write (‘l am an IM student’)

It means showing the sentence between the two signs on the screen

Algorithms ‘sequential algorithm’

» Example An algorithm to solve a first -class equation
Algorithm EQl;

Variables g, b: Integer;

X: real;

Begin

Read(a);

Read(b);

X «— (-1*b) / q;

write(X);

end

Algorithms ‘sequential algorithm’

Algorithm Elements : Variables

A variable is used to store the data needed by the algorithm. It is simply called
a variable because its value changes.

Algorithms ‘sequential algorithm’

Example

In the algorithm for calculating the area of a rectangle, we took the length
and width as variables because the length and width differ from one
rectangle to another.

The variable is characterized by 3 properties: name, type and value

variable

Algorithms ‘sequential algorithm’

®» Example:

A: integer;
A— 11;
A is an integer variable with a value of 11.

Algorithms ‘sequential algorithm’

Types of variables:

Variables are divided into 3 types:

O Numeric
O Character

L Boolean

Algorithms ‘sequential algorithm’

1. Numerical variables:

They are divided intfo two sections:

= |nteger variables (Entier =0): They represent variables whose
values belong to the set of integers, for example -5.... -

» Real variables (Réel aa.s>): They represent variables whose values belong
to the set of real numbers, for example -3,72,1....5, 6....

Algorithms ‘sequential algorithm’

®» Exemple

What are the final values of variables A, B, C after executing the algorithm®e
Algorithm Test;
Variables A,B,C: integer;
Begin
A€l
B<&A+D;

A < B;

C < A+B;
B & C+A;
A < §;
End

Algorithms ‘sequential algorithm’

2. Character variables

They are divided into two sections:

Single-character variables (Caractére): are variables whose value is
one character, and the character is either a number, an alphabetical
letter, or a symbol. For example/"A".. " #'....... 2.

String variables (Chaine de Caracteéres): represent variables whose value
is a set of characters, for example VU783#.T148A L. "'Ali45"

Algorithms ‘sequential algorithm’

3. Boolean variables

They are variables that take only two values,
d true (Vrai)

d false (Faux).

Algorithms ‘sequential algorithm’

» [Exercise : What are the final values of variables A, B, C after executing the
algorithm?

Algorithm Test;

Variables A,B,C: boolean:;
Begin

A < true;

B < false;

A & 5>2:

C < B;

End

Algorithms ‘sequential algorithm’

» Exercise: Write an algorithm that reads the student’s name, then his
grades in two subjects, and then displays his name and grade point

average.

95 o5 islo 88 ablis 5 Ul ool 8slyss o945 @a0sle> ST Gupos ™
aazo 3 Aowwl ,lgbly s Az

Algorithms ‘sequential algorithm’

Algorithm Moyenne;
Variables Notel, Note2: Integer;
Nom: String ; Moy: Real;
Begin

Read (Nom);

Read (Notel);

Read (Note2);

Moy < (Notel+Note2) / 2;
Write (Nom);

Write (Moy);

End

Algorithms ‘sequential algorithm’

Algorithm Elements : Constants

Constants are the opposite of variables in that their value is known at

the beginning of the algorithm and remains constant throughout
execution(Juaidl Jlgh aul (ss.).

Example : The number 11 is considered a constant in the algorithm for

calculating the area of a circle and its declaration is as follows:

Algorithms ‘sequential algorithm’

Algorithm Cercle;
Const Pi=3.14;
Variables R,S: integer;
Begin

Read (R);
S<PI*R*R;

Write (S);

End

Algorithms ‘sequential algorithm’

» Question;

Why do we need to declare the number as a constant at the beginning
of the algorithm when we can use this number without declaring it as a
constante

» Answer:

If the constant is used in multiple places in the algorithm, declaring the
constant makes the modification process easy.

Algorithms ‘sequential algorithm’

» Example: Let the algorithm calculate the average of two students in two different
subjects where the coefficient of the first subject is 3 and the coefficient of the
second subjectis 5

[) oA e i) aa A) gAY LS/
Algorithm Moy?2;

Const Coff1=3; Coff2=5;

Variables Notel,Note2: integer ; Moy: Real,

Begin

Read (Notel,Note2);

M < ((Notel x Coffl) + (Note2 x Coff2)) / (Coffl+ Coff2);
Write (M);

Read (Notel,Note?2);

M < ((Notel x Coffl) + (Note2 x Coff2)) / (Coffl+ Coff2);
Write (M);

End

Algorithms ‘sequential algorithm’

P i) gy T 199 (34 g 1) At/
Algorithm Moy?2;

Variables Notel,Note2: integer ; Moy: Real;
Begin

Read (Notel,Note?2);

M < ((Notel x 3) + (Note2 x 5)) / (3+ 5);
Write (M);

Read (Notel,Note2);

M € ((Notel x 3) + (Note2 x 5)) / (3+ 5);
Write (M);

End

Algorithms ‘sequential algorithm’

Suppose the material coefficients are changed to 1 and 2 respectively, how
do we modify the two algorithms?

® |n the first algorithm where we declared the constants, we change in one
place, which is the line where we declared the constants Coff1 and Coff2

Const Coff1=3; Coff2=5;
It becomes
Const Coffl1=1; Coff2=2;

Algorithms ‘sequential algorithm’

» As for the second algorithm where we did not declare the constants, we
will have to change it at the level of all the lines where we used the
operators.

For example, M «— ((Notel x 3) + (Note2 x5)) / (3+ 5);
becomes
M «<— ((Notel x 1) + (Note2x2))/ (1+ 2);
And so on for all the lines where we used the operators
(& Moleodl Lpud Losziw! sl JawVl gaosd @il 13Sa).

Algorithms ‘sequential algorithm’

Algorithm Elements: Operators
Operators are what we can use to perform operations on variables.
1. Arithmetic operators:

We can place them between numerical variables and they are addition (+),
subtraction (-), multiplication (x), division (/), integer division (Div), exponent (A)
and remainder (mod).

Example: 5 mod 2=1(ax=all douwsll (s8L) 11 mod 3=2 12 Div 5 =2(aowsll)
ol

Algorithms ‘sequential algorithm’

» Priority of arithmetic operations:

exponents and parentheses, then multiplication and division, then addition
and subtraction.

Rl 5 panll i el 5 oyl o5 Gl Y1 5 S 55 1 Eyglgl

Example: What are the final values of variables A, B, C after executing the
algorithme

Algorithms ‘sequential algorithm’

Algorithm Test;

Variables A,B,C: integer ;
Begin

A<l

B & (A+5)x AN,

A < B-A*(5mod A);

C < A+B-3;

C ¢« C+ANB+B);

End

Algorithms ‘sequential algorithm’

Algorithm Elements: Comparison operators

= Equality (=)

= |nequality (<>)

= Greater than or equal to (>=)
= Less than or equal to (<=)
= Exactly greater than (>)

= Exactly less than (<)

Algorithms ‘sequential algorithm’

Algorithm Elements: Logical operators

They are placed between logical variables and are represented by the

operator (ET), the operator (OU), the operator (NON), or the operator (XOR).
Truth tables:

A B |AETE A B AOUB. ﬂIEI nm

V V V V V V

V F F V F V V F V F V
F V F F V V F V V

F F F F F F F F F

CONSTRUCTING OF SIMPLE ALGORITHM
with flowchart (Graphical method)

algorithms ‘sequential algorithm’

We mentioned earlier that the algorithm consists of two
main parts: the declarations or data part and the other is
the body of the algorithm.

1. As for the data part, it confains the declarations of
variables and constants.

2. As for the body part , it is the processing part that
contains the basic operations: assignment operations
and the input and output operations that allow the
sequential execution of the algorithm so that the
operafions are executed one after the other.
That is why the algorithm here is called a sequential
algorithm.

Graphical method (flowchart)

We can formulate the algorithm using
the forms shown in the following table:

Begin / end

Output / input

Calculate operations / assignment

Program direction

Conditional Formula ‘

How to calculate the area

of a rectangle?

on)

Algorithm rectangle; L
Variables X, W, X: real ; / Read L, W /
Begin 1T
Read(L); 5
Read(W); X< W)
X (L *W); <
write (X); / Write X /
end 17

e

Algorithm to to calculate the area of a rectangle

How to solve a first -class
equation ?

Algorithm Eqgl;

Variables a, b:
Integer;

X real;

Begin
Read(a);
Read(b);

X € (-1"b) / q;

write(X);
end

on)
s

/ Read a, b /

U

X € (-1xb) /a
U

[Cwriex |

<5
e

Algorithm to solve a first -class equation

How to calculate the
perimeter of a rectangle and
the area of a circle?

Algorithm Rectangle-Circle;

Variables a, b, R,P,S : Infeger ; .
Begin ° (Begin)
Read(a); Z
Read(b): | Readabr |
Read(R) gy
P & (atb) x2; P & (at+h) x2
S<¢ 314 xRxR; S€ 314 xR xR
write(P); é}(P)

: . write(P);
\;/:;e (5); / write(S); /

~

C e)

Algorithm to calculate the perimeter of @
rectangle and the area of a circle

CHAPTER 3

CHAPTER 3 CONDITIONAL STRUCTURE

INTRODUCTION

SIMPLE CONDITIONAL STRUCTURE
COMPOUND CONDITIONAL STRUCTURE
MULTIPLE CHOICE CONDITIONAL STRUCTURE

BRANCHING

R e

INTRODUCTION

Write an algorithm that reads two numbers A and B and returns the result of
dividing A by Be

» The solution :
First :
What are the inputs and outputs for this algorithm?

®» Algorithm inputs: A, B
» Algorithm outputs: A/B

INTRODUCTION

Secondly :

Algorithm Dividing ;
Variables
A,B: integer ;
C: Readl;
Begin

Read (A);
Read (B);
C<+«— A/B;
Write (C);
End

INTRODUCTION

» Thirdly :the final value of all instructions in body of the algorithm after the

executing ¢
READ (A) 15
READ (B) 3
C+—A/B 5
WRITE C 5

INTRODUCTION

» Question: What we do if the value of B is equal to 02

It is known that division by the number 0 is not possible.

So how do we change the algorithm in this case to avoid making
mistakese

The value of B must be different from 0. In other words, we must
stipulate that the value of B must be different from O.

To do this, we need the conditional formula.

Simple structure of the conditional
formula:

If <Logic expression> Then
Instructions

Else

Instructions
Endif

Simple structure of the conditionadl
formula:

» Modification of previous algorithm

Algorithm Dividing ;
Variables

A,B: integer ;

C: Real;

Begin

Read (A);

Read (B);

If (B=0) then

Write (b must be different 0) ;
Else

C<«——A/B;

Write (C);

Endif ;

End

Simple structure of the conditionadl
formula:

= Write oneolgori’rhm that reads a number A and then tells us whether it is negative or
positives

Algorithm Posit_Negat;
Variables A : integer;
Begin

read(A);

if (A>0) then

Write (" A is positive ');
Else

Write (* Ais Négative');
endif;

end.

Simple structure of the conditionadl
formula:

The previous algorithm takes into account negative and positive numbers but
does not take into account zero.

What will be the output of the algorithm if A=0¢

ANnswer: ¢2¢¢

So we need to add a third condifion to handle the case of A=0

Simple structure of the conditional formula:

= Modification of previous algorithm

Algorithm Posit_Negat;
Variables A : integer ;
Begin
Lire(A);
if (A>0) then
Write (* A is positive ');
else
if (A>0) then
Write (* A is Négative');
else
Write (* Ais Null*);

endif:
end.

Compound conditional sfructure :

= Write an algorithm that reads 3 numbers A, B, C and tells us whether they
are arranged in ascending order or note

We can write the conditional formula in this case in two ways:

Compound conditional sfructure :

» The first method

Algorithm sort ;
Variables A ,B,C: integer ;
begin
Read (A,B,C);
if (A<B) then

if (B<C) then

Write (* The numbers are in ascending order ‘);
endif;

else

write (* The numbers are not in ascending order *);
endif ;
End.

Note: (else) follows the nearest (if) above it

Compound conditional sfructure :

> The second method

Algorithm sort ;
Variables A ,B,C: integer ;
Begin
read(A.B,C);
If ((A>B) and (B>C))then
Write (* The numbers are in ascending order *);

Else

write (The numbers are not in ascending order ‘);
endif ;
end.

Compound conditional sfructure :

Write an algorithm that reads 3 (unequal) numbers A,
B, C and then arranges them in descending order.

» Method 1:

Algorithm SORT ;

Variables A ,B,C: integer;
Begin

read(A.B,C);

If ((A>B) and (B>C)) then
Write (A,B,C);

Else

if ((A>B) and (C>B)) then
Write (A,C,B);

Else

if ((B>A)and (A>C)) then
Write (B,A,C);

Else

if ((B>C) and (C>A))
Write (B,C,A);

Else if ((C>A) and (A>B))
write (C,A,B);

Else

Write (C,B,A);

Endif ;

Endif;

Endif;

Endif;

Endif;

End .

Compound conditional sfructure :

Exercise: Suppose the password for an application is “ST2018". Write an algorithm
that reads a string and tells us whether the entered string matches the password or
not.

Algorithm Password;
Variables : word,Pass:String ;
Begin Pass <= "ST2018%;
Read (word);

if (Pass =word) then

Write (‘ldentical password...’);
Else

Write (‘Wrong password...’);
Endif ;

End .

Multiple choice conditional structure

Write an algorithm that reads two numbers, then reads a third number.
If the third number is equal to 1, the algorithm adds the two numbers.
If the third number is equal to 2, the algorithm subftracts the two numbers.
If the third number is equal to 3, the algorithm multiplies the two numbers.

If the third number is equal to 4, the algorithm divides the first number by
the second.

Algorithme Test_ ACCORDING TO;
Variables A ,B,C : Integer ; D: Real;
Begin

Read (A,B,C);

ase of C

1:D«— A+B; write (D);
2.D«—— A-B;, write (D);
3:D«—— AXB; write (D);

4:D . A/B; write (D) ;

Else : write (‘The operation code is wrong’);

End caseof
End.

Chapter 4

CHAPTER 4 :LOOPS

INTRODUCTION
WHILE LOOP
REPEAT LOOP
FOR LOOP
NESTED LOOPS

R e

Infroduction

Write an algorithm that prints numbers from 1 to 10

The solufion
Algorithm Writing;
Begin

Write (‘8’) ;
Write (‘9') ;
Write (‘10’) ;
End

Infroduction

So far, it's normal,

but if we wanted to print numbers from 1 to 100 on the screen?

we will have to write the print instruction 100 times, which is naturally boring and
contradicts the nature of the algorithms that were originally created to facilitate
such things.

What is the solution then?

The solution is iterative loops.

Infroduction

Loops allow a specific part of the algorithm to be repeated multiple times.
There are several types of loops:

= -Forloop

= -wihle loop

= - Repeatloop

FOR LOOP

» |t s arepetitive loop that repeats the instructions inside it a specific number
of tfimes that is known in advance.

= This loop uses a variable that monitors the number of repetitions (counter).

» This variable is characterized by three elements:

O Its initial value

O Final value

O the value by which it increases or decreases from one iteration
to the next.

FOR LOOP

» The for loop takes the following form:

For variable from start to end step N

Instructions
End

FOR LOOP

» EXAMPLE:

Write an algorithm that reads a number N and then calculates N!

FOR LOOP

= SOLUTION
Algorithm Fact;
Variables N, F,i : integer ;
Begin
Read(N);
Fee1;
fori=1to N
F «—F*i;
End
Write (F) ;
End .

FOR LOOP

» EXERCICE:

Write an algorithm that reads two numbers A and B and then calculates A8

WHILE LOOP

It is a recursive loop that repeats the instructions inside it if the entry condition
for the loop is met.

If the condition is not met, the instructions inside the loop are not executed.
The loop condition is a logical statement that can be either true or false.

The instructions inside the loop are repeated as long as the condition is true
(continuation condition), and the repetition stops when the condition is not
met.

The condition is checked before entering the loop.

WHILE LOOP

The general form of the WHILE loop is given as follows:

While Condition do
Instructions
End while

WHILE LOOP

®» Example :

Write an algorithm that reads a number N and then calculates NI

WHILE LOOP

Algorithm Fact;
Variables N, F, i : integer ;
Begin

Read (N);

F<—];

|1

While (i <= N) do
Fe— F*i;

| «—i+1;
Endwhile

Write (F) ;

End .

Repeat Loop

» The repeat loop is arecursive loop that repeats the instructions inside it until
the stopping condition at the end of the loop is met.

» The loop condition is a logical statement that can be either frue or false.

» The instructions inside the loop are repeated as long as the stopping
condition is met, and the repetition stops when this condifion is metf.

» The condition is checked after each iteration (at the end of the loop).

Repeat Loop

» The general form of the repeat loop is given as follows:

Repeat

Instructions

Up to Condition

Repeat Loop

®» Example :

Write an algorithm that reads a number N and then calculates NI

Repeat Loop

Algorithm Fact;
Variables N, F, i : integer ;
Begin
Read (N);
Fe—1I;

| — 1;
Repeat
Fe—F*i;
l«—i+1;
Up to (i > N)
Write (F) ;
END.

Differences between the three loops

» The difference between the FOR loop and the WHILE and REPEAT loops is that the variable
responsible for monitoring the number of repetitions (counter) changes automatically in
the FOR loop, while this is not the case for the other two loops, as it is necessary fo add an
instruction that performs this task.

» |nthe FOR loop, the counter must be used, while this is not the case for the WHILE and
REPEAT loops.

» |n the case of using the counter in the WHILE and REPEAT loops, it must be given an initial
value before the loop.

» As for the WHILE loop condition, it is called a continuation condition because the loop
continues as long as this condition is met, unlike the REPEAT loop condition, which is called
a stop condition, because when it is met, the loop stops.

» The continuation condition is checked before the start of each iteration, while the stop
condifion is checked at the end of each iteration.

» The FOR loop is used exclusively in cases where the number of repetitions is known in
advance, while we can use the other two loops in both cases (Knowing or not knowing the
number of repetitions in advance).

NESTED loop

INFINITE LOOP

CHAPTER S AND 6

