
COURSE OF

ALGORITHMS AND DATA

STRUCTURE

CHAPTER 1and 2

L1 Mathematics

Semester 1

Prepared by ; Dr MAHMA OUAFA

2025/2026

1

CHAPTER 1-2

1. Brief history of computer science

2. Introduction to algorithms

3. Simple sequential algorithm

2

History of computer science

Computer science is the science that deals with the

automatic processing of information using machines,

specifically computers.

 Science: refers to the sum of theories and techniques.

 Automatic processing: is done by using precise and

repeatable methods.

 Information: is the basic element of knowledge, which

can be stored, processed and transformed.

 The computer basically consists of two parts: the

hardware part and the software part

3

History of computer science

 The discipline of computer science includes the study of

algorithms and data structures, computer and network

design, modeling data and information processes, and

artificial intelligence.

Computer science draws some of its foundations from

mathematics and engineering and therefore incorporates

techniques from areas such as probability and statistics,

and electronic circuit design.

Computer science also makes heavy use of hypothesis

testing and experimentation during the conceptualization,

design, measurement, and refinement of new algorithms,

information structures, and computer architectures.

4

History of computer science

 The history of computers goes back over 200 years.

 At first theorized by mathematicians and entrepreneurs,

during the 19th century mechanical calculating

machines were designed and built to solve the

increasingly complex number-crunching challenges.

 The advancement of technology enabled ever more-

complex computers by the early 20th century, and

computers became larger and more powerful.

 the history of the computer science is related to the

history of the computer basically.

5

Introduction to algorithms

Question :

Let's assume that a student asked you,

How to calculate the area of a rectangle?

 How would you explain to him what must be done to calculate this

area?

6

Introduction to algorithms

Answer:

The following steps must be followed :

1. Knowing the length of the rectangle

2. Knowing the width of the rectangle

3. Calculating the area by multiplying the length by the width

4. Announcing and displaying the result (area of the rectangle)

These steps are called Algorithm.

the width

the length

7

Introduction to algorithms

Question :

Let's assume that we wrote an algorithm to solve a problem, can the

computer understand the steps of the algorithm and implement it?

8

Introduction to algorithms

Answer :

Before we answer this question, let's assume that we have two people,

the first is an Arab who only speaks Arabic and the second is an

Englishman who only speaks English.

The Arab person wrote a text in Arabic and sent it to the English

person. It is clear that the English person will not be able to understand

the text written in Arabic.

9

Introduction to algorithms

Answer :

Likewise, the computer cannot understand the steps of the algorithm

because they are written in a language it does not understand.

In order for the computer to be able to understand these steps and

implement them, the algorithm must first be translated into one of the

programming languages Python, C++ , C JAVA, Pascal....

After that, the computer itself translates the program into the language it

directly understands (machine language(

10

CHAPTER 2
11

Algorithms ‘sequential algorithm’

All program is a result of translating the algorithm into instructions directed to

be executed using the computer.

Algorithm

Step 1

Step 2

Step 3

…

program

Instruction 1

Instruction 2

Instruction 3

…

Programming

language

12

Algorithms ‘sequential algorithm’

Algorithm properties : The algorithm has the following characteristics

1. Generality : we note that the previous steps are suitable for calculating the area
of any rectangle .

2. Inputs: The number and nature of inputs vary from one algorithm to another. The
inputs in the previous example are length and width.

3. Outputs: The results of executing the algorithm. The outputs in the previous example
are area.

4. Clarity (the opposite of vague): Each step of the algorithm must be clear and
unambiguous, meaning that each step must be clear in a way that allows it to be
executed correctly.

5. Solvability: It is possible for a certain step in the algorithm to be clear
(unambiguous) but not solvable. For example, we cannot find √ −4.

6. Time limitation: It is possible for a certain step in the algorithm to be clear
(unambiguous) and solvable but not solvable in a specific time frame. For
example, calculating the final value of the number π.

13

 Machine language (binary): This is what is stored on your disks (the

.exe for example), and brought into memory to be executed, is a

sequence of 1 and 0 (eg: 101000100).

 For a human being, writing sequences of 0s and 1s is not very fun,

not very readable, and causes many errors.

 So they invented programming languages,

14 Algorithms ‘sequential algorithm’

How does the machine "understand" a programming language?

You need a program that translates the text of your program into binary code,

we are dealing with a compiler,

A computer program is a list of commands that tell a computer what to do. It is

presented in the form of one or more sequences of instructions

15 Algorithms ‘sequential algorithm’

So ,

 An algorithm is a method for solving a particular problem.

 A programming language that describes an algorithm

 Program is Séquence of instructions which specifies step by step the

operations to be carried out to obtain a result.

16 Algorithms ‘sequential algorithm’

 Algorithm Structure) General form (

17

Algorithm Title

Variables ………..

Begin

Instruction 1

Instruction 2

Instruction 3

………….

End

Algorithms ‘sequential algorithm’

After taking a general overview of what an algorithm, a program, and

programming languages , we return below to detail the basic elements that

make up an algorithm.

18 Algorithms ‘sequential algorithm’

 Basic instructions in the algorithm

1. Assignment process : Give a value to a variable A 5

It means giving the variable A a numerical value 5 .

2. Reading process: A process in which the user assigns a value to a variable

via the keyboard. We express it with the keyword “ READ”

read (A)

It means read the value that the user will enter and put it in the variable A .

19 Algorithms ‘sequential algorithm’

3. Writing process:

It is the process that shows the value of a variable by printing it on the screen.

It also prints text sentences on the screen and expresses it using the keyword

(write) , exemples :

A 5

Write(A)

It means showing the value of the variable A on the screen

Write (‘I am an IM student’)

It means showing the sentence between the two signs on the screen

20 Algorithms ‘sequential algorithm’

 Example An algorithm to solve a first -class equation

Algorithm Eq1;

Variables a, b: Integer;

X: real;

Begin

Read(a);

Read(b);

X (-1*b) / a;

write(X);

end

21 Algorithms ‘sequential algorithm’

Algorithm Elements : Variables

A variable is used to store the data needed by the algorithm. It is simply called

a variable because its value changes.

22 Algorithms ‘sequential algorithm’

Example

In the algorithm for calculating the area of a rectangle, we took the length

and width as variables because the length and width differ from one

rectangle to another.

The variable is characterized by 3 properties: name, type and value

23

variable

valuetype name

Algorithms ‘sequential algorithm’

 Example:

A: integer;

A 11;

A is an integer variable with a value of 11.

24 Algorithms ‘sequential algorithm’

Types of variables:

Variables are divided into 3 types:

 Numeric

 Character

 Boolean

25 Algorithms ‘sequential algorithm’

1. Numerical variables:

They are divided into two sections:

 Integer variables (Entier صحيحة): They represent variables whose
values belong to the set of integers, for example -5.... -

3....0.....1....2....10.....

 Real variables (Réel حقيقية): They represent variables whose values belong

to the set of real numbers, for example -3,72,1....5, 6....

26 Algorithms ‘sequential algorithm’

 Exemple

What are the final values of variables A, B, C after executing the algorithm?

27

Algorithm Test;

Variables A,B,C: integer;

Begin

A  1;

B A + 5;

A  B;

C A+B;

B  C+A;

A  8;

End

Algorithms ‘sequential algorithm’

2. Character variables

They are divided into two sections:

 Single-character variables (Caractère): are variables whose value is

one character, and the character is either a number, an alphabetical

letter, or a symbol. For example’A’.. ’ #’.......’2’.....

 String variables (Chaine de Caractères): represent variables whose value

is a set of characters, for example’’783#’’.....’’148A’’……’’Ali45’’

28 Algorithms ‘sequential algorithm’

3. Boolean variables

They are variables that take only two values,

 true (Vrai)

 false (Faux).

29 Algorithms ‘sequential algorithm’

 Exercise : What are the final values of variables A, B, C after executing the

algorithm?

30

Algorithm Test;

Variables A,B,C: boolean;

Begin

A  true;

B  false;

A  5>2;

C  B;

End

Algorithms ‘sequential algorithm’

 Exercise: Write an algorithm that reads the student’s name, then his

grades in two subjects, and then displays his name and grade point

average.

 قوم أكتب خوارزمية تقوم بقراءة اسم الطالب ثم نقاطه في مادتين ثم ت: تمرين
بعد ذلك بإظهار اسمه و معدله

31 Algorithms ‘sequential algorithm’

32

Algorithm Moyenne;

Variables Note1, Note2: Integer;

Nom: String ; Moy: Real;

Begin

Read (Nom);

Read (Note1);

Read (Note2);

Moy  (Note1+Note2) / 2;

Write (Nom);

Write (Moy);

End

Algorithms ‘sequential algorithm’

Algorithm Elements : Constants

Constants are the opposite of variables in that their value is known at

the beginning of the algorithm and remains constant throughout

execution(التنفيذ ثابتة طوال تبقي).

Example : The number π is considered a constant in the algorithm for

calculating the area of a circle and its declaration is as follows:

33 Algorithms ‘sequential algorithm’

34

Algorithm Cercle;

Const Pi=3.14;

Variables R,S: integer;

Begin

Read (R);

S  Pi * R * R;

Write (S);

End

Algorithms ‘sequential algorithm’

 Question:

Why do we need to declare the number as a constant at the beginning

of the algorithm when we can use this number without declaring it as a

constant?

 Answer:

If the constant is used in multiple places in the algorithm, declaring the

constant makes the modification process easy.

35 Algorithms ‘sequential algorithm’

 Example: Let the algorithm calculate the average of two students in two different

subjects where the coefficient of the first subject is 3 and the coefficient of the

second subject is 5

36

التصريـــــح بالثـــــــــوابـــــــــت */ /*كتابة الخوارزمية مع
Algorithm Moy2;

Const Coff1=3; Coff2=5;

Variables Note1,Note2: integer ; Moy: Real;

Begin

Read (Note1,Note2);

M  ((Note1 x Coff1) + (Note2 x Coff2)) / (Coff1+ Coff2);

Write (M);

Read (Note1,Note2);

M  ((Note1 x Coff1) + (Note2 x Coff2)) / (Coff1+ Coff2);

Write (M);

End

Algorithms ‘sequential algorithm’

37

التصريح بالثـــــــــوابـــــــــت */ /*كتابة الخوارزمية من دون

Algorithm Moy2;

Variables Note1,Note2: integer ; Moy: Real;

Begin

Read (Note1,Note2);

M  ((Note1 x 3) + (Note2 x 5)) / (3+ 5);

Write (M);

Read (Note1,Note2);

M  ((Note1 x 3) + (Note2 x 5)) / (3+ 5);

Write (M);

End

Algorithms ‘sequential algorithm’

Suppose the material coefficients are changed to 1 and 2 respectively, how

do we modify the two algorithms?

 In the first algorithm where we declared the constants, we change in one

place, which is the line where we declared the constants Coff1 and Coff2

Const Coff1=3; Coff2=5;

It becomes

Const Coff1=1; Coff2=2;

38 Algorithms ‘sequential algorithm’

 As for the second algorithm where we did not declare the constants, we

will have to change it at the level of all the lines where we used the

operators.

For example, M ((Note1 x 3) + (Note2 x 5)) / (3+ 5);

becomes

M ((Note1 x 1) + (Note2 x 2)) / (1+ 2);

And so on for all the lines where we used the operators

(المعاملاتهكذا بالنسبة لجميع الأسطر التي استخدمنا فيها).

39 Algorithms ‘sequential algorithm’

Algorithm Elements: Operators

Operators are what we can use to perform operations on variables.

1. Arithmetic operators:

We can place them between numerical variables and they are addition (+),

subtraction (-), multiplication (x), division (/), integer division (Div), exponent (^)

and remainder (mod).

Example: 5 mod 2=1 (باقي القسمة الصحيحة) 11 mod 3= 2 12 Div 5 =2(القسمة)
الصحيحة

40 Algorithms ‘sequential algorithm’

 Priority of arithmetic operations:

exponents and parentheses, then multiplication and division, then addition

and subtraction.

الطرحللأسس و الأقواس ثم الضرب و القسمة ثم الجمع و تكون : الأولوية

Example: What are the final values of variables A, B, C after executing the

algorithm?

41 Algorithms ‘sequential algorithm’

42

Algorithm Test;

Variables A,B,C: integer ;

Begin

A  1 ;

B  (A + 5) x A^2;

A  B-A*(5 mod A);

C  A+B-3;

C  C+A^(B+B);

End

Algorithms ‘sequential algorithm’

Algorithm Elements: Comparison operators

 Equality (=)

 Inequality (<>)

 Greater than or equal to (>=)

 Less than or equal to (<=)

 Exactly greater than (>)

 Exactly less than (<)

43 Algorithms ‘sequential algorithm’

Algorithm Elements: Logical operators

They are placed between logical variables and are represented by the

operator (ET), the operator (OU), the operator (NON), or the operator (XOR).

Truth tables:

44

A B A ET B

V V V

V F F

F V F

F F F

A B A OU B

V V V

V F V

F V V

F F F

A B A XOR B

V V F

V F V

F V V

F F F

A NON A

V F

F V

Algorithms ‘sequential algorithm’

CONSTRUCTING OF SIMPLE ALGORITHM

with flowchart (Graphical method)
45

We mentioned earlier that the algorithm consists of two

main parts: the declarations or data part and the other is

the body of the algorithm.

1. As for the data part, it contains the declarations of

variables and constants.

2. As for the body part , it is the processing part that
contains the basic operations: assignment operations

and the input and output operations that allow the

sequential execution of the algorithm so that the

operations are executed one after the other.
That is why the algorithm here is called a sequential

algorithm.

46 algorithms ‘sequential algorithm’

We can formulate the algorithm using

the forms shown in the following table:

47 Begin / end

Output / input

Calculate operations / assignment

Program direction

Conditional Formula

Graphical method (flowchart)

How to calculate the area

of a rectangle?
48

Algorithm rectangle;

Variables X, W, X: real ;

Begin

Read(L);

Read(W);

X (L *W);

write(X);

end

Algorithm to to calculate the area of a rectangle

49

Begin

Read L, W

X  (L× W)

Write X

End

How to solve a first -class
equation ?

50

Algorithm Eq1;

Variables a, b:

Integer;

X: real;

Begin

Read(a);

Read(b);

X (-1*b) / a;

write(X);

end

Algorithm to solve a first -class equation

51

Begin

Read a, b

X  (-1×b) /a

Write X

End



How to calculate the

perimeter of a rectangle and
the area of a circle?

52

Algorithm Rectangle-Circle;

Variables a, b, R,P,S : Integer ;

Begin

Read(a);

Read(b);

Read(R)
P  (a+b) ×2;

S  3.14 × R × R;

write(P);

write(S);

end

Algorithm to calculate the perimeter of a
rectangle and the area of a circle

53

Begin

Read a, b ,R

P  (a+b) ×2

S  3.14 × R × R

write(P);

write(S);

End

CHAPTER 3

54

CHAPTER 3 CONDITIONAL STRUCTURE

1. INTRODUCTION

2. SIMPLE CONDITIONAL STRUCTURE

3. COMPOUND CONDITIONAL STRUCTURE

4. MULTIPLE CHOICE CONDITIONAL STRUCTURE

5. BRANCHING

55

INTRODUCTION

Write an algorithm that reads two numbers A and B and returns the result of

dividing A by B?

 The solution :

First :

What are the inputs and outputs for this algorithm?

 Algorithm inputs: A, B

 Algorithm outputs: A/B

56

INTRODUCTION

Algorithm Dividing ;

Variables

A,B: integer ;

C: Real;

Begin

Read (A);

Read (B);

C A / B;

Write (C);

End

57

Secondly :

INTRODUCTION

 Thirdly :the final value of all instructions in body of the algorithm after the

executing ?

58

READ (A) 15

READ (B) 3

C A/B 5

WRITE C 5

INTRODUCTION

 Question: What we do if the value of B is equal to 0?

 It is known that division by the number 0 is not possible.

 So how do we change the algorithm in this case to avoid making

mistakes?

 The value of B must be different from 0. In other words, we must

stipulate that the value of B must be different from 0.

 To do this, we need the conditional formula.

59

Simple structure of the conditional

formula:

If <Logic expression> Then

Instructions

Else

Instructions

Endif

60

Simple structure of the conditional

formula:

 Modification of previous algorithm

61

Algorithm Dividing ;

Variables

A,B: integer ;

C: Real;

Begin

Read (A);

Read (B);

If (B=0) then

Write (b must be different 0) ;

Else

C A / B;

Write (C);

Endif ;

End

Simple structure of the conditional

formula:

 Write an algorithm that reads a number A and then tells us whether it is negative or
positive?

Algorithm Posit_Negat;

Variables A : integer ;

Begin

read(A);

if (A>0) then

Write (‘ A is positive ‘);

Else

Write (‘ A is Négative‘);

endif;

end.

62

Simple structure of the conditional

formula:

The previous algorithm takes into account negative and positive numbers but

does not take into account zero.

What will be the output of the algorithm if A=0?

Answer: ????

So we need to add a third condition to handle the case of A=0

63

Simple structure of the conditional formula:

 Modification of previous algorithm

Algorithm Posit_Negat;

Variables A : integer ;

Begin

Lire(A);

if (A>0) then

Write (‘ A is positive ‘);

else

if (A>0) then

Write (‘ A is Négative‘);

else

Write (‘ A is Null‘);

endif;

end.

64

Compound conditional structure :

 Write an algorithm that reads 3 numbers A, B, C and tells us whether they

are arranged in ascending order or not?

We can write the conditional formula in this case in two ways:

65

Compound conditional structure :

 The first method

Algorithm sort ;

Variables A ,B,C: integer ;

begin

Read (A,B,C);

if (A<B) then

if (B<C) then

Write (‘ The numbers are in ascending order ‘);

endif;

else

write (‘ The numbers are not in ascending order ‘);

endif ;

End .

66

Note: (else) follows the nearest (if) above it

Compound conditional structure :

Algorithm sort ;

Variables A ,B,C: integer ;

Begin

read(A,B,C);

If ((A>B) and (B>C))then

Write (‘ The numbers are in ascending order ‘);

Else

write (‘ The numbers are not in ascending order ‘);

endif ;

end.

67

 The second method

Compound conditional structure :

 Method 1:

Algorithm SORT ;

Variables A ,B,C: integer;

Begin

read(A,B,C);

If ((A>B) and (B>C)) then

Write (A,B,C);

Else

if ((A>B) and (C>B)) then

Write (A,C,B);

Else

if ((B>A) and (A>C)) then

Write (B,A,C);

68

Else

if ((B>C) and (C>A))

Write (B,C,A);

Else if ((C>A) and (A>B))

write(C,A,B);

Else

Write (C,B,A);

Endif ;

Endif;

Endif;

Endif;

Endif;

End .

Write an algorithm that reads 3 (unequal) numbers A,

B, C and then arranges them in descending order.

Compound conditional structure :

Exercise: Suppose the password for an application is “ST2018”. Write an algorithm
that reads a string and tells us whether the entered string matches the password or
not.

Algorithm Password;

Variables : word,Pass:String ;

Begin Pass ”ST2018“;

Read (word);

if (Pass = word) then

Write (‘Identical password…’);

Else

Write (‘Wrong password…’);

Endif ;

End .

69

Multiple choice conditional structure

Write an algorithm that reads two numbers, then reads a third number.

If the third number is equal to 1, the algorithm adds the two numbers.

If the third number is equal to 2, the algorithm subtracts the two numbers.

If the third number is equal to 3, the algorithm multiplies the two numbers.

If the third number is equal to 4, the algorithm divides the first number by

the second.

70

Algorithme Test_ACCORDING TO;

Variables A ,B,C : Integer ; D: Real;

Begin

Read (A,B,C);

Case of C

1: D A +B; write (D);

2: D A -B; write (D);

3: D A xB; write (D);

4: D A /B; write (D) ;

Else : write (‘The operation code is wrong’);

End caseof

End .

71

Chapter 4
72

CHAPTER 4 :LOOPS

1. INTRODUCTION

2. WHILE LOOP

3. REPEAT LOOP

4. FOR LOOP

5. NESTED LOOPS

73

Introduction

Write an algorithm that prints numbers from 1 to 10

The solution

Algorithm Writing;

Begin

Write (‘1’) ;

Write (‘2’) ;

Write (‘3’) ;

Write (‘4’) ;

Write (‘5’) ;

Write (‘6’) ;

Write (‘7’) ;

Write (‘8’) ;

Write (‘9’) ;

Write (‘10’) ;

End

74

Introduction

So far, it's normal,

but if we wanted to print numbers from 1 to 100 on the screen?

we will have to write the print instruction 100 times, which is naturally boring and

contradicts the nature of the algorithms that were originally created to facilitate

such things.

What is the solution then?

The solution is iterative loops.

75

Introduction

Loops allow a specific part of the algorithm to be repeated multiple times.

There are several types of loops:

 - For loop

 - wihle loop

 - Repeat loop

76

FOR LOOP

 It is a repetitive loop that repeats the instructions inside it a specific number

of times that is known in advance.

 This loop uses a variable that monitors the number of repetitions (counter).

 This variable is characterized by three elements:

 Its initial value

 Final value

 the value by which it increases or decreases from one iteration

to the next.

77

FOR LOOP

 The for loop takes the following form:

For variable from start to end step N

Instructions

End

78

FOR LOOP

 EXAMPLE :

Write an algorithm that reads a number N and then calculates N!

79

FOR LOOP

 SOLUTION

Algorithm Fact;

Variables N, F,i : integer ;

Begin

Read(N);

F 1;

for i =1 to N

F F * i ;

End

Write (F) ;

End .

80

FOR LOOP

 EXERCICE :

Write an algorithm that reads two numbers A and B and then calculates AB

81

WHILE LOOP

It is a recursive loop that repeats the instructions inside it if the entry condition

for the loop is met.

If the condition is not met, the instructions inside the loop are not executed.

The loop condition is a logical statement that can be either true or false.

The instructions inside the loop are repeated as long as the condition is true

(continuation condition), and the repetition stops when the condition is not

met.

The condition is checked before entering the loop.

82

WHILE LOOP

The general form of the WHILE loop is given as follows:

While Condition do

Instructions

End while

83

WHILE LOOP

 Example :

Write an algorithm that reads a number N and then calculates N!

84

WHILE LOOP

Algorithm Fact;

Variables N, F, i : integer ;

Begin

Read (N);

F 1;

i 1;

While (i <= N) do

F F * i ;

i i + 1 ;

Endwhile

Write (F) ;

End .

85

Repeat Loop

 The repeat loop is a recursive loop that repeats the instructions inside it until

the stopping condition at the end of the loop is met.

 The loop condition is a logical statement that can be either true or false.

 The instructions inside the loop are repeated as long as the stopping

condition is met, and the repetition stops when this condition is met.

 The condition is checked after each iteration (at the end of the loop).

86

Repeat Loop

 The general form of the repeat loop is given as follows:

Repeat

Instructions

Up to Condition

87

Repeat Loop

 Example :

Write an algorithm that reads a number N and then calculates N!

88

Repeat Loop

Algorithm Fact;

Variables N, F, i : integer ;

Begin

Read (N);

F 1;

i 1;

Repeat

F F * i ;

i i + 1 ;

Up to (i > N)

Write (F) ;

END.

89

Differences between the three loops

 The difference between the FOR loop and the WHILE and REPEAT loops is that the variable
responsible for monitoring the number of repetitions (counter) changes automatically in
the FOR loop, while this is not the case for the other two loops, as it is necessary to add an
instruction that performs this task.

 In the FOR loop, the counter must be used, while this is not the case for the WHILE and
REPEAT loops.

 In the case of using the counter in the WHILE and REPEAT loops, it must be given an initial
value before the loop.

 As for the WHILE loop condition, it is called a continuation condition because the loop
continues as long as this condition is met, unlike the REPEAT loop condition, which is called
a stop condition, because when it is met, the loop stops.

 The continuation condition is checked before the start of each iteration, while the stop
condition is checked at the end of each iteration.

 The FOR loop is used exclusively in cases where the number of repetitions is known in
advance, while we can use the other two loops in both cases (Knowing or not knowing the
number of repetitions in advance).

90

NESTED loop91

INFINITE LOOP92

CHAPTER 5 AND 6
93

94

