

Radiometry – Course Syllabus

Course Information

Semester	UEF 5.2 – Applied Geophysics
Teaching Hours	52h30 (Lecture: 1h30, Tutorial: 1h30)
Credits	5
Coefficient	2

Course Objectives

- Understand the nature and origin of natural nuclear radiation.
- Describe radioactive decay laws and the units used in radiometry.
- Identify radioactive elements present in geological formations and their gamma-ray spectra.
- Explain gamma–matter interactions and attenuation mechanisms.
- Understand the functioning of radiometric instruments (gas detectors, scintillometers, gamma spectrometers).
- Perform basic processing, calibration, and interpretation of radiometric survey data.
- Prepare students for advanced radiometric field acquisition and spectrometry.

Prerequisites

Students should have successfully completed first- and second-year courses in:

- General physics
- Nuclear physics (basics)
- Geology
- Mathematics

These provide the necessary background to follow the course in good conditions.

Course Content

I – General Concepts

1. Historical background of radiometry
2. Nuclear radiation types (α , β , γ)
3. Radioactive decay law
4. Radiometric units and measurement conventions
5. Applications of radiometry in geophysics

II – Radioactive Phenomena in Geological Formations

1. Abundance of radioactive elements in the Earth's crust
2. Radioactive series of Uranium, Thorium, and Actinium
 - o Composition
 - o Gamma-ray emission spectra

Radiometry – Course Syllabus

3. Interaction of gamma rays with matter
 - o Absorption mechanisms
 - o Attenuation coefficients
 - o Calculation methods
4. Induced radioactivity
 - o Production of radioactive isotopes
 - o Recording induced activity
 - o Geophysical applications

III – Radiometric Instruments

1. Gas-filled detectors
2. Ionization chambers
3. Geiger–Müller counters
4. Scintillometers: structure and operation
5. Gamma-ray spectrometers
 - o Detector structure
 - o Energy discrimination
 - o Selection of energy windows (K, Th, U channels)
6. Modes of gamma activity recording using spectrometers
7. Calibration procedures
 - o Total count calibration
 - o Three-channel spectrometric calibration (K, Th, U)

Practical Work (TP)

1. Radioactive decay law (measurements & calculations)
2. Applications of radiometry
3. Gas-filled detector operation
4. Gamma spectrometer structure and functioning
5. Selection and calibration of energy windows

Mode of Evaluation

- **Continuous assessment:** quizzes, reports, TP evaluation
- **Final exam:** written or written + problem-solving
Combined evaluation according to department rules.

Recommended References

- *Review of Radiation Oncology Physics – A Handbook for Teachers and Students* (IAEA)
- Kazimierz Rozanski & Klaus Froehlich (1996). *Radioactivité et sciences de la Terre*.
- Jean Colin, Emmanuel Vient, François Mauger (2010). *Interactions Rayonnement–Matière*. Notes de cours